Proceedings of Third International Conference on Artificial Intelligence Planning Systems, 1 dinburgh, UK, May 29-31, 1996 Menlo Park, CA: AAA1 Press. ## Static and Completion Analysis for Planning Knowledge Base Development and Verification ### Steve A. Chien Jet Propulsion Laboratory California Institute of Technology email: steve.chien@jpl.nasa.gov ### Abstract A key obstacle hampering fielding of Al planning applications is the considerable expense of developing, verifying, updating, and maintaining the planning knowledge base (KB). Planning systems must be able to compare favorably in terms of software life.cycle costs to other means of automation such asscripts or rule-base(i expert systems. Consequently, in order 10 field real systems, planning practitioners mast be able to provide: 1. tools to allow domain experts to create and debug their own planning knowledge bases; 2. tools for software verification, validation, and testing; and 3. tools to facilitate updates and maintenance of the planning knowledge base. This paper describes two types of tools for planning knowledge base development: static KB analysis techniques to detect certain classes of syntactic errors in a planning knowledge base; and completion analysis techniques, to interactively debug the planning knowledge base. We describe these, knowledge development tools and describe empirical results documenting the usefulness of the sc tools. Please address all correspondence to: Steve A. Chien Artificial Intelligence Group Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, M/S 52.5-3660 Pasadena, CA 91109-8099 steve.chien@jpl.nasa.gov Tel.818-306-6144 Fax: 818-306-6912 ARTIFICIAL INTELLIGENCE GROUP JET PROPULSION J. ABORATORY CALIFORNIA INSTITUTE OF TECHNOL .0G% # Static and Completion Analysis for Planning Knowledge Base Development and Verification Slew A. Chien JetPropulsion Laboratory, California Institute of Technology 4800 oak Grove Drive, M/S 5?5-3660, Pasadena, CA9 I 109-8099 chien@aig.jplnasa.gov ### Abstract A key obstacle hampering fielding of Al planning applications is the considerable expense of developing, verifying, updating, and maintaining the planning knowledge base (KB). Planning systems must be able 10 compare favorably in terms of software lifecycle costs to other means of automation such as scripts 01 rule-based expert systems. Consequently, in order to field real systems, planning practitioners must be able to provide: 1, tools to allow domain experts to create and debug their own planning knowledge bases; ?, tools for software verification, validation, and testing; anti 3. 100Is 10 facilitate updates and maintenance of the planning knowledge base. This paper describes two types of tools forplanning knowledge base development: static KB analysis techniques to detect certain classes of syntactic errors in a planning knowledge base; and completion analysis techniques, 10 interactively debug the planning knowledge base. We describe these knowledge development tools anti describe empirical results documenting the usefulness of these tools. ### 1. introduction A majorfactor in determining the. feasibility of applying Al planning techniques to a real-wmld problem is the amount of effort required to construct, debug, verify, and update (maintain) the planning knowledge base. In particular, planning systems must be able to compare favorably in terms of software lifecycle costs to other means of automation such as scripts or rule-l]ased expert systems. An important component to reducing such costs is to provide a good environment for developing planning knowledge bases. Despite this situation, relatively little effort has been devoted to developing an integrated set of tools to facilitate constructing, debugging, verifying, and updating specialized knowledge structures used by planning systems. This work was performed by the Jet Propulsion Laborator y, California Institute of Technology, under contract with the National Aeronautics anti Space Administration While considerable research has focused on knowledge acquisition systems for rule-based expert systems (Davis 1979), and object-oriente d/inheritance knowledge bases with procedures and methods ((iii & Tallis 1995), little work has focused on knowledge acquisition for specialized planning representations. Notable exceptions to this statement are (desJardins 1994) which uses inductive learning capabilities and a simulator to reffine planning operators and (Wang 1995) which uses expert traces to learn and a simulator to refine planning operators. However, in many cases a simulation capability is not available, in these situations the user needs assistance in causally tracing errors anti debugging from a single example). This assistance is sorely needed to enable domain experts to write anti-debug domain theories without relying on A1 people. Furthermore, planning knowledge base maintenance is often overlooked. Such tools are aiso invaluable in tracking smaller bugs, verifying KB coverage, and updating the KB as the domain changes. While these tools can drawmuch from causal tracking techniques used in ruic-based systems (Davis 1979), there are several aspects of planning systems which differentiate them from ruic-based systems - their specialized representations anti-the.ir temporal reasoning capabilities. 'Iswo specialized representations for planning are prevalent task reduction rules anti planning opc.raters. These representations as well as the most common constraints (ordering and code.si~nation constrains) have evolved so that specialized reasoning algorithms must be adapted to support debugging. Many types of knowledge encoding criers can occur: incorrectly (ic.fine.(i preconditions, incorrectly defined effects, and incorrect variable specifications. Invariably the end result is a mismatch between the planners model of the legality of a plan and the model dictated by the domain (or domain expert). Thus, the end symptoms of a knowledge base error can be broadly classified into two categories. Incorrect Plan Generation: This occurs when the planner is presented a problem and generates a plan which dots not ¹ For work in verifying rule-based systems - see (O 'Keefe & O'Leary 1993). For work on rule base refinement using training examples (the analogue of a simulator for planning KB refinement) see (Ginsberg C(al. 1988). achi eve the goals in the current problem cont ext. In our experience, the Current problem and faulty solution can focus attention in debugging the flaw in the knowledge base. By using the faulty plan to direct the debugging process, the user can often focus on the incorrect link in the plan (faulty protection or achievement) - allowing for rapid debugging. Failure to Generate a Plan: This occurs when the planner is presented with a solvable problem, but the planner is unable to find a solution. In our experience this type of failure is fat more difficult to debug. This is because the use 1 does not have a particular plan to use to focus the debugging process. Thus, often a user would manually write down a valid plan based on their mental model of the domain, and then trace through the steps. Of the plan to verify that the plan could be constructed. Because our experience has been that detecting and debugging failure-to generate-a-plan cases has been more difficult, our work focuses on: 1. verifying that a domain theory can solve all solvable problems; and 2. facilitating debugging of cases where the domain theory does not allow solution of a problem deemed solvable by the domain expert. This paper describes two types of tools developed lo assist in developing planning knowledge bases - static analysis tools and completion analysis tools. Static analysis tools analyze the domain knowledge rules and operators 10 sec if certain goals can or cannot be inferred. 11 OWCVCI, because of computational tractability issues, these checks must be limited. Static analysis tools are useful in detecting situations in which a faulty knowledge base causes a top-level goal or operator precondition 10 be unachievable - frequently due to omission of an operator effect or a typographical error. Completion analysis tools operate at planning time and allow the planner to complete plans which can achieve allbut a few focused subgoals or top-level goals. Completion analysis tools are useful in cases where a faulty knowledge base dots not allow a plan to be constructed for a problem that the domain expert believes is solvable. in the case where the completion analysis tool allows a plan 10 beformed by assuming goals true, the domain expert can then be focused on these. goals as preventing the plan from being generated. The static analysis and completion analysis tools have been developed in response 10 our experiences in developing and refining the knowledge base for the Multimission VICAR Planner (MVP) (Chien 1994a, 1994b) system, which automatically generates VICAR image processing scripts from specifications of image processing goals. The MVP system was initially used in December 1993, and has been in routine use since. May 1994. The tools described in this paperwere driven by our considerable effor 1s in knowledge base development, debugging, and updates to the modest sized knowledge base for MVP. The remainder of this paper is organized as follows. Section 2 outlines the two planning representations we support: (ask reduction rules and operators. Section 2 also briefly describes how these representations are used in planning. Section 3 describes static analysis rules for assisting in planning KB verification and development. Section 4 describes completion analysis rules for assisting in planning KB development. ### 2. VICAR Image Processing Wc describe the static and completion analysis tools within the context of the Multimission VI CAR Planner system, a fielded Al planning system which automates certain types of image processing? MVP uses both task reduction and operator-based methods in planning. However, the two paradigms are separate, in that MVI' first performs task reduction (also called hierarchical task network 01- HTN planning) and then performs operator-based planning. all of the task reduction occurs at the higher conceptual level and the operator-based methods al the lower level. Consequently, MVP uses two main types of knowledge to construct image processing plans (scripts): I. decomposition rules - to specify how problems are to be decomposed into lower level subproblems; and ?. operators - to specify how VICAR programs can be used to achieve lower levelimage processing goals (produced by I above). These also specify how VICAR programs interact. These two types of knowledge structures are described in further detail below. ### 2.1 Task Reduction Planning in MVP MVP uses a task reduction approach (Lansky 1993) to planning. In a task reduction approach, reduction roles dictate how in plan-space planning, one plan can be Ic.gaily transformed into another plan. The planner then searches the plan space de.filled bythese reductions. Syntactically, a task reduction rule is of the form: 1.1 **IS** RHS G_I = initial goal set/actions G_R= reduced goal set/actions $C_0 = constraints$ = > $C_1 = constraints$ C_2 = context N = notes on decomposition This rule stales that a set of goals or actions G_1 can be reduced 10 a new set of goals or actions G_R if the set of constraints C_0 is satisfied in the current plan and the context C_2 is satisfied in the current plan provided the additional constraints C_1 are added 10 the plan. C_0 and C_1 are constraint forms which specify conjuncts of constraints, each I of which may be a codesignation constraint on ²We only briefly describe the MVP application due to space constraints. For further information on this application—area, MVP architexture, and knowledge representation sec (Chien 1994a,b). ³ MVP first uses task reduction (Lansky 1993) planning techniques to perform high level strategic classification and decoposition of the problem then uses traditional operator-based (Pemberthy & Weld 1992) planning paradigms toplanat the lower level.. absolute navigation. decomposition for the problem class mosaicking with specifies an initial problem decomposition for that problem set of conditions specifying a problem class, and the RHS of a skeletal decomposition rule in MVP corresponds to goals corresponding to a VICAR problem class. The LHS allow for classification and initial decomposition of a set of implemented in by encoding decomposition rules which particular solution method. Skeletal planning in MVP problem. in which a problem is identified as one of a general class of Skeletal planning(Iwasaki & Friedland 1985) is a technique cannot be invalidated during a specified temporal interval. constraint (which specifies that a goal or set of goals the plan or derivation of the plan), satisfied only if the activity or goal specified did appear in the derivation of the plan), a present constraint specified does not appear in the plan and never appeared in actions or goal achievements in the plan, a not-present constraint (which is satisfied only if the activity or goal variables appearing in the plan, an ordering constraint on For example, the following rule represents This classification is then used to choose or a protection (which is C2= an initial classification Co null G1 mosaicking goal present has not yet been made GR = C1 : these subtasks be ZES mosaicking problem class is goals until mosaicking protect local correction performed in order 1. 2. 3. 4. 5 5. touch-ups 4. mosaicking 2. navigation local correction, This simplified decomposition rule states that if mosaicking is a goal of the problem and an initial problem decomposition has not yet been made, then the initial problem decomposition should be into the subproblems local correction, navigation, etc. and that these steps must be performed in a certain order. This decomposition also specifies that the local correction goals must be protected during the navigation and registration processes. instrument to the target. target object to correct for variable distance from the For example, geometric correction uses a model of decomposition to be influenced by factors such as the current goals and situation. This allows the overall problem into a more specific plan specialized based on the specific type of instrument and spacecraft used to record the image. presence or absence of certain image calibration files or the hierarchical decomposition to refine the initial skeletal plan procedure decompositions. MVP uses this approach of specific goals or procedures as dictated by goal or procedures are incrementally refined into more and more is an approach to planning where abstract hierarchical planning. Hierarchical planning (Stefik 1981) MVP also uses decomposition rules to implement For VOYAGER images, goals or geometric correction is performed as part of the local correction process, as geometric distortion is significant enough to require immediate correction before other image processing steps can be performed. However, for GALILEO images, geometric correction is postponed until the registration step, where it can be performed more efficiently. decompose them into much smaller subproblems Third, relatively few problem decomposition rules are easily able to cover a wide range of problems and the output plans more understandable to the analysts. problem can be used to annotate the resulting plan to make notes from the decomposition rules used to decompose the subareas which we have implemented thus far. Second, the accept classification and decomposition rules for the straightforward process for the analysts to articulate and the decomposition rules very naturally represent the generation problem. manner in which the analysts attack the hierarchical planning in MVP has several strengths. First, This decomposition-based approach to skeletal and Thus, it was a relatively procedure # 2.2 Operator-based Planning in MVP MVP represents lower level procedural information in terms of classical planning operators. These are typical classical planning operators with preconditions, effects, conditional effects, universal and existential quantification allowed, and with codesignation constraints allowed to appear in operator preconditions and effect conditional preconditions. For reasons of space constraints the operator representation is only briefly described here. (for a good description of a classical planning operator representation similar to ours see (Penberthy & Weld 1992)). Thus, an operator has a list of parameter variables, a conjunctive set of preconditions, and for each effect (which is a conjunct) there is a (possibly null) set of preconditions. Operator Parameters variable* Preconditions: Prec =: Prop* Effects: [Effect_i = Prop* when Cprec_i = Prop*]* The above operator has the semantics that it can only be executed in a state in which all of the preconditions Prec are true. And when executed, for each effect set, if all of the conditional many transfer. are true. And when executed, for each effect set, if all of the conditional preconditions Cpreci are true in the input state, the effect Effect; occurs and all of the effects are true in the output state. A description of the GALSOS operator is shown below operator GALSOS :parameters ?infile ?ubwc ?calc :preconditions the project of 2infile must be galileo the data in 2infile must be raw data values reffects teseaus are not intact for ?infile the data in ?infile is not raw data values missing lines are not filled in for ?infile ?infile is radiometrically corrected the image format for ?infile is halfword ?infile has blemishes-removed if (UBWC option is selected) then?infile is uneven bit weight corrected if (CALC option is selected) then?infile has entropy values calculated ### 2.3 Different Tool Types and Representations In order 10 facilitate this key process of knowledge acquisition and refinement we have been developing a SC I of knowledge-base editing and analysis tools. These tools can be categorized into two general types: (1) static knowledge base analysis tools; and (2) completion analysis tools. Because MVP uses two types of knowledge; decomposition rules and operator definitions, each of these tools can be used with each of these representations. Thus there are four types of tools: I. staticrule analysis tools; 2. staticoperator analysis tools; 3 completion rule analysis 100is; and 4.completionrule analysis tools. For each type of tool, it is possible to per form the analysis using propositional or full predicate checking. In propositional analysis, all actions and goals are considered optimistically only for the predicate or goal name. For example, when considering whether an operator could achieve a specific fact, "(radiometrically-corrected?file1)", optimistic treatment means that any effect or initial state fact with the predicate "radiometrically-corrected" can be When considering whether an effect, used. "(radiometrically-corrected?file1)", deletes a protected fad "(radiometrically-corrected?file2)", one presumes that the arguments to the predicate can be resolved such that the conflict dots not occur. Therefore the effect is not considered 10 delete the fact. The propositional analysis is used as a fast checking component 10 catchsimple errors when debugging a knowledge base. The full static analysis is useful but restricted to mom balcl--like analysis ducto it's computational expense. ### 3. Static Analysis Tools ### 3.1 Static Analysis Tools for Task Reduction Rules Static analysis loots analyze the knowledge base to determine if pre-specified problem-classes are solvable. The static analysis techniques can be used in two ways: 1. fastrun-time checking using propositional analysis (called propositional static rule analysis); and 2, of f-line knowledge-base analysis to verify domain coverage (called full static rule analysis), In our knowledge base development and refinement framework, the knowledge base is divided into a set of problem spaces. A problem space consists of a set of allowable sc(s of' input goals or high level tasks and a set of operational goals, facts, or lower-level tasks. in the case of static rule analysis, the analysis process is to verify that all legal sets of input goals can be reduced into operational goals/facts/tasks. The set of allowable input goals is formally specified in terms of logical constraints on a set of goals produced by the interface. For example, below we show a simplified problem space description for the navigation problemspace. These problem spaces represent a set of contexts in which the decomposition planner of operator planner is attempting to solve. a general class of problems. Decomposing the overall problem solving process into these problem spaces and analyzing each in isolation dramatically reduces the complexity of the analysis process. Of course, this introduces the possibility that the knowledge base analysis is flawed due to a poor problem decomposition. Unfortunately, we know of no other way around this problem. Input goals are all combinations of: (attempt-to-FARENC?files) (automatch?files) (manmatch?files) (corve-verily?files) (display-automatch-residual-error?files) (display-manmatch-residual-error?files) (update-archival-sedr?files) Subject to the constraint that: ~((attempt-to-FARENC ?files ?files) and (automatch ?files)) ~(curve-verify?files) or (attempt-to-FARENC?files) ~(display-automatch-residual-error?files) or (automatch?files) ~(display-manmatch-residual-error?files)or (manmatch ?files) Generally, the allowable sets of input goals arc. of the. form "all combinations of these 5 goals except that goal 4 and goal 3 arc incompatible, and that every time goal 2 is selected goal 1 must have this parameter... The output legal set of goals/facts/tasks are defined in terms of a set of operational predicates. For example, in the relative navigation example used above has the following operational predicates. Operational Predicates: construct-om-matrix display-om-error This means that any goal/activity/fact produced using one of these predicates is considered achieved. Static rule analysis runs the rules on these allowable combinations and verifies that the decomposition rules cover the Corn binations (this corresponds 10 exhaustive testing of the task reduction rules). As described in Section 2.1, there are several types of constraints used in the task reduction rules. Some of these constraints do not make sense for a propositional analysis, how constraints are handled in the propositional analysis is shownbelow. | Constraint typ | e Propositional | Case | Full Case | |----------------|-----------------|------|-----------| | codesignation | ignored | | tracked | | not-present | ignored | | tracked | | present | propositional | | tracked | | ordering | tracked | | tracked | | protection | ignored | | tracked | StaticRuleAnalyze(input-goals, operational-goals, rules) initialize Q = {(goals=input-goals, constraints= {))] select a planP from o for each plan P' produced by reducing a goal in P using a task reduction rule w. constraints as below IF P' contains only operational goals return SUCCESS ELSE add P' to Q and continue The principal difference between the propositional and non-propositional cases is that when predicates are transformed 10 the propositional case, constraint resolution optimistically presumes variable assignments will remove conflicts. For example, consider the plan and reduction rules shownbelow. Plan1: activities: (foo c216) (bar c216) constraints:.... Plan2: activities: (foo c216) (barc211) constraints: ReductionRule 1: if present: (bar ?a) not-present: (foo ?b) Reduction Rule2: if present: (bar ?a) (foo ?a) In the propositional case, both rule1 and rule2 apply to both plan1 and plan2. In the full case, rule 1 dots not apply either plan1 or plan2. In the full case rule2 applies to plan1 but riots not apply to plan2. Note that in the propositional case, in order to presume that variables resolve optimistically, the analysis procedure need not compute all possible bindings. Rather, the analysis procedure resolves present constraints by presuming matching if the predicate matches and by ignoring not-present constraints (and others as indicated above)). To further illustrate, consider the following example from the MVP domain. The input goals, relevant decomposition rules, and operational predicates are shown below. Input Goals: (automatch ?files) (manmatch ?files) (display-manmatch-error '! files) **Decomposition Rules:** Rule1 LHS (automatch ?f1) (manmatch ?f1) RHS (construct-om-matrix ?f1 auto-man-refined) Rule2 LHS (display-manmatch-error ? f2) present (automatch ?f2) (manmatch ?f2) RHS (display-om-error ?f2 auto_man-refined) Operational Predicates: construct-om matrix, display-omerror in both the propositional and full static rule analysis cases both rules would apply in the analysis. *1'1111s, both analyses would indicate that the input goals can be reduced into operational lauls/activities. # 3.2 Static Analysis Tools for Operator-based Planning The static analysis techniques can also be applied to the MVP's operator-based planner component. This is accomplished by generalizing the planning algorith m. Again, as with the static rule analysis, the static operator analysis is considering a general class of problems defined by a problem space. As with the static rule analysis, a problem space defines an allowable set of goals and a set of operational predicates which are assumed true in the initial state. In the propositional static operator analysis case, in order 10 treat the domain theory optimistically, we must assume that all protection interactions can be resolved by variable assignments. Because of the absence of protection constrains, the propositional operator static analysis corresponds to the propositional rule-based static analysis. An operator with preconditions P and effects E maps onto a rule with 1,11S 1' and RHSE. Conditional effect extend analogously. The non-propositional static analysis case is handled by modifying a standard operator-based planner. The planner is changed by adding an achievement operation corresponding to presuming any operational fact is true in the initial state. We are currently investigating using more sophisticated static analysis techniques to detect more subtle cases where goals are, unachievable [Etzioni1993, Ryu & Irani, 1992]. The full (e.g. non-propositional) operator static analysis algorithm is shown below. StaticOperatorAnalyzePull(input, operational, operators) initialize plan queue Q to { (goals=input, constraints= {))) select a plan 1' from Q foreachplan I" produced by achieving a goal Gusing the following methods: - 1. use an existing operator in the plan to achieve G - 2, add a new operator to the plan to achieve G - 3.* if the goal is operation all assume it true in the initial state resolve conflicts in 1" (protections) IFP has no unresolved conflicts and nounachieved goals THEN return SUCCESS ELSE add 1" to Q and continue Figure 3 shows the subgoal tree generated by performing full static analysis on the operator planner problem space Shown below. Figure 3: Subgoal Graph indicating Static Operator Analysis for Navigation Goals. Input Goals: (compute-om-matrix ?fl manmatch) (update-archi val-sedi ?fl manmatch) Operational Predicates: project, initial-predict-source ### 4. Completion Analysis Tools The second type of knowledge base development tool used in MVP is the completion analysis tool. In many cases, a knowledge engineer will construct a domain specification for a particular VICAR problem, test it out on known files and goal combinations. Two possible outcomes will occur. First, it is possible that the domain specification will produce an invalid solution. Second, it is possible that the planner will be unable to construct a solution for a problem that the expert believes is solvable. in the case that the planner constructs an invalid solution, the knowledge engineer can use the inconsistent part of the solution to indic ate the flawed portion of the domain theory. For example, suppose that the planner produces a plan consisting of steps ABCD, but the expert believes that the correct plan consists of steps ABCSD. In this case the knowledge engineer can focus on the underlying, reason that S is necessary. S must have had some purpose in the plan. It may be needed to achieve a lop-level goal G or a precondition 1' of A, B, or C. Alternatively, if the ordering of operators or variable assign ments is not valid in the produced plan, the knowledge engineer can focus on the protection or other constraint which should have been enforced. The second possibility is that the domain specification fails to allow the desired solution. For example, the expert believes that the plan ABCD should achieve the goals, but the planner fails to find any plan to achieve the goals. In this case, detecting the flawed part of the knowledge base is more difficult, because it is difficult to determine which part of the domain specification caused the desired output. plan to fail. In manually debugging these types of problems, the knowledge engineerwould write out by hand the plan that should be constructed. The knowledge engineerwould then construct a set of problems, each of which corresponded to a subpart of the failed complete problem. For example, if a Pailed problem consisted of achieving goals A, B, and C, the knowledge engineer might try the planner on A alone, B alone, and C alone, to attempt to isolate the bug to the portion of the knowledge base corresponding to A, B, or C, correspondingly. Completion analysis tools partially automate this tedious process of isolating the bug by constructing subproblems. The completion analysis tools allow the decomposition or operator-based planner4 to construct a proof with assumptions that a smallnumber of goals or subgoals can be presumed achievable (typically only one or two)⁵. By seeing which goals if assumable, make the problem solvable, the user gains valuable information about where the bug lies in the knowledge base. For example, if a problem consists of goals A, B, and C, and the problem becomes solvable if B is assumed achievable, the bug is likely to be inthe portion of the knowledge base relating to the achievement of B. Alternatively, if the problem is solvable when either Bor (' is assumed achievable, then the bug likely lies in the interaction of the operators achieving Band C. The completion analysis tool is used by running the modified planner algorithm until either: 1. a resource bound of the number of plans expanded is reached; or 2, there are no more plans to expand. The completion analysis algorithmforthereduction planner is shown below. CompletionReductionPlanner(input, operational, rules) initialize Q = {(goals= input, constraints= (}, assumptions=0)} IF rt'source bound return SOI ,LJ'1'1ONS ELSE select a plan P from O for each plan P' produced by reducing 1' using a task reduction rule Hithe constraints in P'are consistent IF 1" contains only operation goals/activities '1'1 IEN add 1" to SOL,[J'1'1ONS f LSE add 1" to Q and continue ELSE diseard \}" for each plan 1" produced by presuming the current goal ⁴In the completion analysis for both the reduction planner and the operator-based planner there are choice points in the scale'h in ordering plans in the scarch queue. In both cases, we use standard heuristics based on the number of outstanding goals and plan derivation steps so far. I lowever, the static analysis techniques would work with any appropriate heuristic for this search choice. ⁵The number of goals assumable is kept small because allowing the planner to assume goals dramatically increases the search space for possible plans. It effectively adds 1 to the branching factor of every goal achievement node in the search space for the plan IFP contains only operation goals/activities THEN add P to SOLUTIONS ELSE increment NumberOfAssumptions(P') achieved/operational IF NumberOfAssumptions(P') <= bound THEN add P' to Q s p expand. All solutions found are then reported back to the theory for refinement. The basic completion analysis expanded is reached; or 2, there are no more plans to algorithm for the operator planner is shown below initialize Q = {(goals: input, constraints: {}, CompletionOperatorPlanner(input, initial-state, operators) assumptions: 0)} IF resource bound exceeded THEN return SOLUTIONS ELSE select a plan P from Q for each plan P' produced by achieving a goal using the following methods: - I, use existing operator in the plan to achieve the goal - add a new operator to the plan to achieve the goal - use the initial state to achieve the goal - conflicts in P' (protections) the new plan is 1 more than the number in P resolve completion analysis; the number of assumptions in less than the bound assume the goal true using if the number of goals already assumed in P is - IF P' has no unresolved conflicts and has no unachieved goals THEN add P to SOLUTIONS ELSE add P' to Q and continue The main drawback of the completion analysis tools is that process in the following ways: can be presumed true. Currently the user can restrict this Thus, with the completion analysis tools, we provide the they dramatically increase the size of the search space. user with the option of restricting the types of goals that - allow only top-level (problem input) goals to be - preconditions to be assumed; allow only goals appearing in a specific operators - precondition or effects) to be assumed; and 3. allow goal relating to an operator (appearing in its - only allow certain predicates to be assumed fairly effective in focusing the search. Thus far, we have found these restriction methods to be corresponds to editing the problem definition (or domain Note that allowing certain goals to be presumed true > computationally more efficient than running the planner top-level goals and re-running the planner each time portions of the search space unrelated to the suspended multiple times. This is because the planner need explore effect, running the planner user to focus on repairing the domain theory. As a side designed to alleviate this tedious process and to allow the combinatorially. suspended, the number of edits and runs grows tiresome. Furthermore, if multiple goals are allowed to be performing this testing to isolate an error quickly grows one of the operator preconditions removed. multiple times, each time with a domain theory that has corresponds to running the planner on the original problem Allowing a precondition of an operator to be suspended problem definition n times, each time removing one of the true for a problem with N goals corresponds to editing the example, allowing a single top-level goal to be assumed theory) numerous times and re-running the planner. For conditions fewer times. The completion analysis tools are only once is planner then finds a plan which solves all but one of the be suspended (any one of the top-level goals is a valid candidate - the planner tries each in turn. The completion any problems unsolvable by the task reduction planner used in the following manner. MVP automatically logs precondition P1 of O1, and the process continues specifies that the completion planner may consider suspending preconditions of O1. The completion analysis (unreducable) or operator-based planner (no plan found). Thus, the completion analysis techniques are generally achieve P1. But suspending its preconditions does not allow the problem to be solved. This might hint to the this case, suppose another operator O2 should be able to determines which operator O2 should be achieving this is preventing application of this operator. Next, the user operator O1 that should be achieving the goal, and which is unachievable. The user then determines which top-level goals - focusing the user on the top-level goal The user then specifies that one of the top-level goals may bug has been isolated to the particular operator. Another arguments in a different order, or arguments of a different Or that the effect has a different number of arguments, or knowledge engineer forgot to define the effect or operator). operator has an effect that can achieve P (perhaps the P1 from O2 to O1. Alternatively, knowledge engineer that the problem is in the protection of thus preventing a precondition P1 from being achieved. example, it may be that a protection cannot be enforced, recursively until the flawed operator is found planner runs and determines which precondition P1 of O1 process is greatly simplified. bug has been traced to a particular operator, the debugging has the wrong conditional preconditions. Again, once the possibility is that a conditional effect that should be used These types of bugs can be easily detected once the it may be that no the completion analysis tools are used. The graph below in tools are used, we now describe a detailed example of how In order to further explain how the completion analysis Figure 4 illustrates this p rocess from an actual debugging episode which occurred in the development of a portion of the planning knowledge base. Frelating to a problem called relative navigation 7. Each of the following steps in the debugging process is labeled P if the planner performed the step; U if the user/knowledge engineer per forms the step; or C if the completion analysis toolperforms the step. - 1. (l') The planner is unable to solve the original problem. - 2.(U) The user initiates the debugging process by invoking the operator-based completion analysis tool specifying that one to])-level goal may be suspended. - 3. (C) The completion planner constructs a plan achieving all 01 the goals but the tq)-level goal of (compute-ommatrix?om-matrix? file-list?file-list). Figure 4: '1'race of Interactive Debugging Process using Completion Analysis Tools - 4. (U) The user then determines that the OMCOR2 operator should have been able, to achieve the goal (compute-om-matrix?om-matrix?file-list'? file-list). The user then continues the debugging process by invoking the completion analysis tool specifying that a precondition of the OMCOR2 operator may be suspended. - S. (C) in response 10 the user request, the completion planner finds a plan achieving at goals except the OMCOR2 precondition (ticpoirrl-file ?tp?file-list manmatch). - 6. (U) The user then determines that the precondition (ticpoinl-file ?tp?file-list manmatch) should be achieved ⁶Note that this is the same portion of the knowledge base used to generate the VICAR code fragment shown in the introduction. This is also the operator portion of the knowledge base relating directly 10 the task reduction rules shown in the example for static rule analysis. 7 For the interested reader, navigation of the image is the process of determining the appropriate transformation matrix to map each pixel from the 2-dimensional (line, sample) of the image space to a 3-dimensional (x,y,z) of some coordinate object space (usually based on the planet center of the target being imaged). Relative navigation corresponds to the process when determining the in) solute position of each point is difficult to compute so that the process focuses 011 determining the correct positions of each point relative to other points in related images. by the MANMATCH operator, and invokes the operator completion analysis tool allowing suspension of one of the preconditions of the MANMATCH operator. - 7. (C) The completion planner then finds a plan achieving all goals but the precondition (refined-overlap-pairs?ropfile? file-list) of the operator MANMATCH. - 8. (U) The user then determines that the precondition (refined-overlap-pairs?rop-file? file-list) should have been achieved by the EDIBIS operator and invokes the operator completion analysis tool allowing suspension of an EDIBIS precondition. - 9. (C) The completion planner finds a plan achieving all goals but the precondition (crude-overlap-pair ?cop-file ?file-list) of EDIBIS. - 10. (U) The user then determines that this precondition (crude-overlap-pair ?cop-file? file-list) should have been achieved by the MOSPLOT-construct-crude-nav-file. This results in another invocation of the completion analysis toolallowing suspension of a precondition for MOSPLOT-construct-crude-nav-file. - I 1. (C) The completion analysis tool then finds a plan achieving all goals but the precondition (latlon?mf?lat?lon) for the operator MOSPLOT-construct-crude-nav-file. 12. (U) At this point, the user notices that the constructed plan for achieving the goals has assumed the instantiated goal (latlon &middle-file?lat?lon). This immediately indicates the error to the USCI because the user is expecting a file name as the second argument of the latlon predicate. Unfortunately, we have as of yet not been able to determine any heuristics for controlling the use of these completion tools that allows for more globalsearch or allows for less user interaction. However, in their current form, the completion analysis tools have proved quite useful in debugging the MVP radiometric correction and color triplet reconstruction knowledge base. ### 4.3 Impact of Debugging In order to quantify the usefulness of the completion analysis tools, we collected data from all week phase of domain theory development for the relative navigation portion of the domain theory. During this week, we identified 22 issues raised by a domain expert analyst which at first guess appeared to be primarily in the decomposition rules or operators. For I 1 of these 22 problems (selected randomly) we used the debugging tools in refining the domain theory. For the other 11 problems 8 This is because the latlon goal is designed 10 referto a specific image file (e.g., 1126.IMG). Correspondingly, the planning operators that bad been defined to acquire information such as latlon presumed actual file names. Unfortunately, & middle-file refers to a VICAR variable which will be bound to an actual file name only at the time that the VICAR script is run (i.e. when the plan is executed). Thus, the bug lies in the mismatch between this precondition and the operators which can determine latlon information for a file. This bug was then fixed by defining operators which could utilize the VICAR variable information at runtime and perform the correct steps lo compute the needed latlon information. we did not use the debugging tools. When tools were allowed, we estimated that the tools were applicable in 7 out of the I 11}rot~lc.ills. These of problems were solved in an average of 10 minutes each. The other 4 look on average 41 minutes. The total 11 problems where the tools were used took on average? I minutes each to correct. 111 the 11 problems solved without use of the 100 Is, after fixing all 11 problems, we estimated that in 6 out of the II problems that the debugging tools would have helped. These 6 problems look on average 43 minutes each to solve. The remaining 5 problems took on average 40 minutes to solve. The sc.toad set of 1 lproblems took on average 42 minutes to solve. Set Tools Ave App. Ave Time Not App. Ave Overall Ave Time T0 01 7/11 10 min. 4/1 I 41 min. 21 min. No Tool 6/1 I 43 min. 5/1 I 40 min. 42 min. ### 5. Discussion One area for future work is development of explanation facilities 10 allow the user 10 introspect into the planning process. Such a capability would allow the user 10 ask such questions as "Why was this operator added [0 the plan?" and "Why 1s this operator ordered after this operator?", which can be answered easily from the plan dependency structure. More difficult (trot also very useful) questions are of the form "Why wasn't operator 02 used (o achieve this goal?" or "Why wasn't this problem classified as problem class P?". We are currently investigating using completion analysis tools to answer this type of question. The completion analysis techniques are related to theory refinement techniques from machine learning (Ourston & Mooney 1994, Ginsberg et al. 1988). However, these. techniques presume multiple examples over which to induce errors. Additionally, reasoning about planning operators requires reasoning about the specialized planning knowledge representations and constraints. This paper has described two classes of knowledge base development tools. Static analysis tools allow for efficient detection of certain classes of unachievable, goals and can quickly focus user attention on the unachievable goals, Static analysis techniques can also be used 10 verify that domain coverage is achieved. Completion analysis tools allow the user to quickly focus on which goals (or subgoals) are preventing the planner from achieving a goal set believed achievable by lilt knowledge base developer. These tools are currently in use and we have presented empirical evidence documenting the usefulness of these tools in constructing, maintaining, and verifying the MVP planning knowledge base. ### References (Chien, 1994a) S. Chien, "Using AI Planning Techniques to Automatically Generate Image Processing Procedures: A Preliminary Report ** Proc. AIPS94, Chicago, IL, June 1994, pp. 219-224. (Chien, 1994b) S. Chien, "A utomated Synthesis of Complex Image Processing Procedures for a parge-scale Image Database," Proc. First IEEE Int. Conf. on Image Processing, Austin, TX, Nov 1994, Vol 3, pp. 796-800. (Davis, 1979) Interactive Transfer of Expertise: Acquisition of New Inference Rules, Artificial Intelligence 1'2 (2)1979, pp. 12.1-157. (DesJardins, '1994), "Knowledge Development Methods for Planning Systems," Working Notes of the AAAi Fall Symposium on Learning and Planning: On 10 Real Applications," New Orleans, LA, Nov 1994, pp. 34-40. (Etzioni, 1993) (). Etzioni, "Acquiring Search Control Knowledge via Static Analysis," Artificial Intelligence, 62 (2) 255-302, 1993. ((iii & Tallis 1995) Y. Gil and M. Tallis, "Transaction-based Knowledge Acquisition: Complex Modifications Made Easier," Proc. of the Ninth Knowledge Acquisition for Knowledge-based Systems Workshop, i 995. (Ginsberg et al 1988) A. Ginsberg and S. M. Weiss and P. Politakis, "Automatic Knowledge Based Refinement for Classification Systems", Artificial Intelligence, 35 pp. 197-226, 1988. (Iwasaki and Friedland, 1985) Y. Iwasaki and 1). Friedland, "The Concept and Implementation of Skel etal Plans," Automated Reasoning 1, i (1985), pp. i 6 i -208. (Lansky, 1993) A. Lansky, "Localized Planning with Diverse Plan Construction Methods," TR FIA-93- i7, NASA Ames Research Center, June 1993. (i aVoie et al. 1989) S. LaVoie, D. Alexander, C. Avis, H. Mortensen, C. Stanley, and L. Wainio, VICAR User's Guide, Version 2, JPL Internal Doc.D-4186, Jet Propulsion Laboratory, California Inst. of Tech., Pasadena, CA, 1989. (O'Keefe & O'Leary 1993) R. O'Keefe and D. O'Leary, "Expert System Verification and Validation: A Sur vey and Tutorial," A1 Review, 7:3-42, 1993. (Mooney & Ourston 1994) Mooney, R.J. and Ourston, D., "A Multistrategy Approach to Theory Refinement," in Machine Learning: A Multistrategy Approach, Vol. IV, 16. s. Michalski & G. Teccuci (eds.), pp. 141-- 164, Morgan Kaufman, San Mateo, CA, 1994. (Pemberthy & Weld, 1992) J. S. Pemberthy and D. S. Weld, "UCPOP: A Sound Complete, Partial Order Planner for ADL," Proc. of the Third Int. Conf. on Knowledge Representation and Reasoning, October 1992, pp. 103-114. (Ryu&Irani, 1992) K. Ryu&K. Irani, "Learning from Goal Interactions in Planning: Goal Stack Analysis and Generalization," Proc AAA192, pp. 401-407. (Stefik, 1981) M. Stefik, "Planni ng with Constraints (MOLGEN; Part i)," Artificial Intelligence 16, 2(198-1), pp. ii 1-140. (Wang, 1998) X. Wang, "Learning by observation antipractice: An incremental approach for planning operator acquisition," in Proc. MI.92.